
Driving with Knowledge from the Physical World

Jing Yuan1,2, Yu Zheng2, Xing Xie2, Guangzhong Sun1

1
School of Computer Science and Technology, University of Science and Technology of China

2
Microsoft Research Asia, Building 2, No. 5 Danling Street, Haidian District, Beijing, P.R. China 100090

yuanjing@mail.ustc.edu.cn, {yuzheng, xingx}@microsoft.com, gzsun@ustc.edu.cn

ABSTRACT

This paper presents a Cloud-based system computing customized

and practically fast driving routes for an end user using (historical

and real-time) traffic conditions and driver behavior. In this

system, GPS-equipped taxicabs are employed as mobile sensors

constantly probing the traffic rhythm of a city and taxi drivers’

intelligence in choosing driving directions in the physical world.

Meanwhile, a Cloud aggregates and mines the information from

these taxis and other sources from the Internet, like Web maps and

weather forecast. The Cloud builds a model incorporating day of

the week, time of day, weather conditions, and individual driving

strategies (both of the taxi drivers and of the end user for whom

the route is being computed). Using this model, our system

predicts the traffic conditions of a future time (when the computed

route is actually driven) and performs a self-adaptive driving

direction service for a particular user. This service gradually

learns a user’s driving behavior from the user’s GPS logs and

customizes the fastest route for the user with the help of the Cloud.

We evaluate our service using a real-world dataset generated by

over 33,000 taxis over a period of 3 months in Beijing. As a result,

our service accurately estimates the travel time of a route for a

user; hence finding the fastest route customized for the user.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications - data

mining, Spatial databases and GIS;

General Terms

Algorithms, Experimentation

Keywords

Driving directions, trajectory, traffic prediction, cyber-physical.

1. INTRODUCTION
Finding fast driving routes saves both the time of a driver and

energy consumption (as traffic congestion wastes a lot of gas).

Meanwhile, people are more likely to choose public transportation

if they can know in advance that the practically quickest driving

route to a destination is still slower than the public transportation.

Therefore, this service is important for both end users and

governments aiming to ease traffic and protect environment.

Google and Bing Maps have provided the service of finding the

fastest driving path in terms of the speed constraints of a road

segment. However, the practical travel time of a driving route is

usually different from the result calculated based solely on speed

constraints. Although real-time traffic conditions are posted on

some road segments, this is meant as basic information and is not

incorporated into driving direction services. It is frustrating to

traverse a road segment which was fast when being checked on a

map while becomes very crowded when being actually driven.

Essentially, the time that a driver traverses a route depends on

three aspects: 1) The physical feature of a route, such as distance,

the number of traffic lights and direction turns; 2) The time-

dependent traffic flow on the route; 3) A user’s drive behavior.

Given the same route, cautious drivers will likely drive slower

than those driving aggressively. Also, users’ drive behaviors vary

in their progressing driving skills and experiences. E.g., traveling

on an unfamiliar route, a user has to pay attention to the road signs,

hence drive relatively slowly. Thus, a good routing service should

consider these three aspects (routes, traffic and drivers), which are

far beyond the scope of the shortest path computing.

Usually, big cities have a large number of taxicabs traversing in

urban areas. To enable efficient taxi dispatch and monitoring,

taxis are usually equipped with a GPS sensor, which enables them

to report on their location to a server at regular intervals, e.g., 2~3

minutes. That is, a lot of GPS-equipped taxis already exist in

major world cities, generating a huge volume of GPS trajectories

every day [12][13][26]. Intuitively, taxi drivers are experienced in

finding the quickest driving routes based on their knowledge.

When selecting a route, they usually consider multiple factors

including distance, traffic flows and signals, etc. Consequently,

these taxi trajectories already have the knowledge of experienced

drivers, physical routes and traffic conditions.

In this paper, we propose a cloud-based cyber-physical system for

computing practically fast routes for a particular user, using a

large number of GPS-equipped taxis and the user’s GPS-enabled

phone. First, GPS-equipped taxis are used as mobile sensors

probing the traffic rhythm of a city in the physical world. Second,

a Cloud in the cyber world is built to aggregate and mine the

information from these taxis as well as other sources from the

Internet like weather forecast. The mined knowledge includes the

intelligence of taxi drivers in choosing driving directions and

traffic patterns on road surfaces. Third, the knowledge in the

Cloud is used in turn to serve Internet users and ordinary drivers

in the physical world. Fourth, a mobile client, typically running in

a user’s GPS-phone, accepts a user’s query, communicates with

the Cloud, and presents the result to the user. The mobile client

gradually learns a user’s driving behavior from the user’s driving

routes and supports the Cloud to customize the fastest route for

the user. The contribution of our work lies in three aspects:

 Using the intelligence of taxi drivers and traffic patterns

mined from a large number of taxi trajectories, we propose a

routing service which self-adapts to a particular user’s

driving behavior and customizes the fastest path for the user.

 We infer the future traffic conditions on a road using an

mth-order Markov model considering both the historical

traffic patterns and present traffic flow mined from taxi

trajectories. Then, the predicted future traffic condition is

integrated into the proposed routing service. We evaluated

the prediction model with Beijing taxi data as well as

Singapore traffic data, and found a better performance over

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

KDD’11, August 21–24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08...$10.00.

some well-known methods using historical patterns or real-

time traffic alone like T-Drive [26] and ARIMA [10]. Using

a high dimensional embedding approach, we can conduct

this model online.

 We built our system with a real dataset generated by 33,000

taxis in a period of 3 months, and evaluated the system with

extensive experiments in both effectiveness and efficiency.

The remainder of this paper is organized as follows. Section 2

gives an overview of our system. Section 3 presents our driving

direction service. Section 4 details the processes of traffic

condition prediction. Section 5 reports on major experimental

results followed by some discussions. Finally, we summarize the

related work in Section 6 and draw conclusions in Section 7.

2. PRELIMINARY
In this section, we define some terms used in this paper and give

an overview of our work.

Definition 1 (Taxi Trajectory): A taxi trajectory is a sequence

of GPS points pertaining to one trip. Each point consists of a

longitude, latitude and a timestamp . That is,
 , where . defines

the maximum sampling interval between two consecutive points.

Definition 2. (Road Segment): A road segment is a directed

(one-way or bidirectional) edge that is associated with a direction

symbol (), two terminal points (,), and a list of

intermediate points describing the segment using a polyline. If

 =one-way, can only be traveled from to ,

otherwise, people can start from both terminal points, i.e.,

 or . Each road segment has a length

 and a speed constraint , which is the maximum

speed allowed on this road segment.

Definition 3. (Route): A Route is a set of consecutive road

segments, , where ,

 . The start point and end point of a route can be

represented as = and = .

Figure 1 shows the framework of our system which consists of

two parts: knowledge discovery and service providing.

Knowledge discovery: This part is comprised of two steps, offline

mining and online inference. 1) In the first step, we mine the

accumulated historical data, including taxis trajectories and

weather condition records, and build four landmark graphs

respectively corresponding to different weather conditions

(normal and severe weather) and day types (weekday and

weekend). This mining step runs offline and not very often, e.g.,

every month. Here, a landmark is defined as a road segment that

has been frequently traversed by taxis, and an edge connecting

two landmarks represents the frequent transition of taxis between

the two landmarks. Each edge in these landmark graphs is

associated with a distribution of travel time learned from the taxi

trajectories. Such landmark graphs can well model taxi drivers’

intelligence in finding driving directions and traffic patterns on

road surfaces. 2) In the online inference step, we calculate the

real-time traffic on landmark edges according to the recently

received taxi trajectories, and infer future traffic conditions in

terms of the real-time traffic and the corresponding landmark

graph. This process is conducted every 10-20 minutes.

Service providing: As shown in the left part of Figure 1, this

process is comprised of five steps. 1) A user submits a query,

consisting of a start point , a destination , a departure time

and a custom factor , from a GPS-enabled mobile phone. Here,

 can be a future time and is a vector, which represents how fast

the user typically drives on different landmark edges. is set by a

default value at the very beginning and is gradually updated in

later services. 2) Using our time-dependent routing algorithm, the

Cloud computes the fastest driving route for the user according to

the received query. This routing algorithm uses the traffic

condition at the time when the road was actually driven. This

future condition is constantly computed in the online inference. 3)

The Cloud sends the computed driving route along with the

distributions of travel times on each landmark edge contained in

the driving route to the user’s mobile phone. 4) The GPS-phone

records a GPS trajectory when the user really traverses the route.

5) The user’s phone computes a new based on the recorded

trajectory and the travel time distributions sent from the Cloud.

Figure 1: The framework our system

3. KNOWLEDGE DISCOVERY

3.1 Offline Mining

3.1.1 Modeling Taxi Trajectories
In practice, to save energy and communication loads, taxis usually

report on their locations in a very low frequency, like 2-5 minutes

per point. This increases the uncertainty of the routes traversed by

a taxi [20][27]. Also, we cannot guarantee that there are sufficient

taxis traversing on each road segment anytime even if we have a

large number of taxis. That is, we cannot directly estimate the

speed pattern of each road segment based on taxi trajectories.

In our method, we first partition the GPS log of a taxi into some

taxi trajectories representing individual trips according to the

taximeter’s transaction records. Then, we employ our IVMM

algorithm [27], which has a better performance than existing map-

matching algorithms when dealing with the low-sampling-rate

trajectories, to project a GPS point onto a road segment where the

point was recorded. As a result, each taxi trajectory is converted

to a sequence of road segments.

Based on the preprocessed taxi trajectories, we detect the top-k

frequently traversed road segments, which are termed as

landmarks. First, the sparseness and low-sampling-rate of the taxi

trajectories do not support us to directly calculate the travel time

for each road segment while we can estimate the traveling time

between two landmarks (which have been frequently traversed by

taxis). Second, the notion of landmarks follows the natural

thinking pattern of people. For instance, the typical pattern that

people introduce a route to a driver is like this “take I-405 South

at NE 4th Street, then change to I-90 at exit 11, and finally exit at

Qwest Field”. Instead of giving turn-by-turn directions, people

prefer to use a sequence of landmarks (like NE 4th Street) that

highlight key directions to the destination.

Service providing

1. Send a query

Q=(qs, qd, t, α)

Weekend

Severe weather

Weekday

3. Route downloading

4. Logging the

real travel with

a GPS trace

5. Learning

new α

2. Route

computing Offline

mining

Online

inference

Real-time

taxi trajectories

P
h

y
si

ca
l

w
o

rl
d

C
y

b
er

 w
o

rl
d

Knowledge discovery

Normal weather

Landmark Graphs

Real/Future traffic

Historical trajectories

and weather

Landmark Graphs

After detecting the landmarks, we define the transition between

two landmarks as below:

Definition 4. (Transition): Given a trajectory archive, a time

threshold , two landmarks , , arriving time , leaving time

 , we say = (, ; ,) is a transition if the following

conditions are satisfied:

(I) There exists a trajectory : , after map

matching, is mapped to a road segment sequence ().

 , s. t. = ; = .

(II) ,…, are not landmarks.

(III) = ; = and the travel time of this transition

 .

Let be the set of the transitions connecting . If ,

we say is a candidate edge, where

 = { | (, ; ,) }

records all the historical arriving and leaving times. The frequency

of is the average number of transitions recorded per day,

denoted as . Given a minimum frequency threshold , is

a landmark edge if . If no ambiguity arises, we denote

the landmark edge by . Later, we connect all the landmark

edges and construct a landmark graph defined as follows:

Definition 5. (Landmark Graph): A landmark graph =(,) is

a directed graph that consists of a set of landmarks (conditioned

by k) and a set of landmark edges conditioned by and .

We observe (from the taxi trajectories) that different weekdays

(e.g., Tuesday and Wednesday) almost share similar traffic

patterns while the weekdays and weekends have different traffic

patterns. We also find that the traffic pattern varies in weather

conditions. Therefore, we respectively build different landmark

graphs for weekday and weekend, and for normal and severe

weather conditions, like storm, heavy rain, and snow. In total,

2 2 = 4 landmark graphs are built. The weather condition records

are crawled from a weather forecast website.

Figure 2. An example of building landmark graph

Figure 2 illustrates an example of building a landmark graph. If

we set k = 4, the top-4 road segments (, , ,) with more

projections are detected as landmarks. Note that the consecutive

points (like and) from a single trajectory () can only be

counted once for a road segment (). This aims to handle the

situation that a taxi was stuck in a traffic jam or waiting at a traffic

light where multiple points may be recorded on the same road

segment (though being traversed once). As shown in Figure 2 (C),

after the landmark detection, we convert each taxi trajectory from

a sequence of road segments to a landmark sequence, and then

connect two landmarks with an landmark edge if the transitions

between these two landmarks conform to Definition 5 (supposing

 =1 in this example). We propose the landmark graph to model 1)

the intelligence of the experienced drivers and 2) traffic flow

patterns on road surfaces during a period of historical time.

3.1.2 Mining Taxi Drivers’ Knowledge
Given the transition set of a landmark edge , we aim to

estimate the time-dependent travel time of . Figure 3 A) plots

all the travel times of the transitions pertaining to a real landmark

edge (on weekdays over 3 months). Clearly, the travel times

gather around some values (like a set of clusters) rather than a

typical Gaussian distribution. This may be induced by 1) the

different number of traffic lights encountered by different drivers,

2) the different routes chosen by different drivers traveling the

landmark edge, and 3) drivers' personal behavior, skills and

preferences. Therefore, different from existing methods [14][22]

regarding the travel time of an edge as a single-valued function

based on time of day, we regard a landmark edge's travel time as a

set of distributions corresponding to different time slots.

Intrinsically, different roads have different time-variant traffic

patterns. That is, we cannot use a predefined time partition for all

the landmark edges. Here, we employ our VE-Clustering

algorithm proposed in [26] to automatically learn a proper time

partition for each landmark edge based on the information entropy

of the data (travel times) associated with a landmark edge. This

approach consists of two phases: V-Clustering and E-Clustering.

The first phase clusters the travel times pertaining to a landmark

edge into several categories based on the variance of the travel

times. The second phase utilizes the information gain to

automatically learn a proper time partition such that in each time

slot the distribution of travel time is relatively stable. As a result,

the travel times of each landmark edge haven been divided into

some portions (pertaining to different time slots), which are ready

for distribution computing.

Figure 3. Learning travel time distributions from raw data

Differentiate taxi drivers’ experiences: Intuitively, different taxi

drivers have different knowledge in different regions of a city

(especially a big city). Drivers are more likely to find out smart

driving routes in a region they are very familiar with. Meanwhile,

this familiarity and experience will change over the times that a

driver has traveled in the region. So, when calculating the

distribution of the travel times, we differentiate taxi drivers’

experience based on the times they have traversed the edge.

Suppose a landmark edge was traversed by different taxi

drivers. Accordingly, the transition set can be categorized into

N sample spaces. After VE-Clustering, the time of day is

partitioned into several time slots. Let be the travel time

distribution (of a time slot) computed only based on the sample

from a taxi driver , denoted as

 (

) (1)

where (1, 2, … ,) stand for different travel time clusters of this

landmark edge and

 represents the proportion of cluster in taxi

r2

Tr1
r3

r9

r8

r6

r1

Tr2

Tr5

Tr3

Tr4

A) Matched taxi trajectories B) Detected landmarks

r9

r3r1

r6

r9

r3r1

r6

p1 p2

p3 p4

r4

r5
r7

r10

e16

e96

e93

e13

e63

C) A landmark Graph

C) Distributions of travel time

7 9 14 17 19 24

0.2

0.4

0.6

0.8

1

time of day (hour)

p
ro

p
o

rt
io

n

3-5min

5-10min

10-14min

B) Experience progressing A) Plots of raw data

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

plateau

 steep

acceleration

fa
m

ili
a
ri
ty

an
i
+b

slow beginning

10 15 20
5

10

15

tr
a
v
e
l
ti
m

e
 (

m
in

)

time of day (hour)

driver ’s sample space. The progress of a driver’s familiarity with

a landmark edge is modeled using a Sigmoid learning curve [16]
(as shown in Figure 3 B), defined as:

 ; (2)

where is the familiarity, are the coefficients, and is

the times that the driver has traversed the landmark edge.

 is the linear transformation which maps from [min,

max] to [-6, 6], where min and max respectively represent the

minimum and maximum number of transitions (generated by all

the drivers) on this landmark edge. Then distribution of this time

slot, denoted by , is computed by the weighted average:

 (

), (3)

Where is a normalized familiarity of the driver , calculated as

. (4)

Using this method, we obtain the travel time distribution of each

time slot for each landmark edge. For example, as shown in

Figure 3 C), in the time slot 9-14, over 60 percent of drivers

traverse the landmark edge in 3-5 minutes (the green bar), while

about 30 percent of drivers need 5-10 minutes (the yellow bar)

and the rest of them even spends 10-14 minutes (the red bar).

3.2 Online Inference
In this section, we infer the traffic condition at a future time (F) in

terms of the landmark graphs built from historical data (H) and

real-time traffic flow calculated based on recently received taxi

trajectories (R). In short, . In our method, we model

this problem as an mth-order Markov chain, and implement the

model on-the-fly using a high-dimensional embedding approach.

Table 1 Notations

3.2.1 Modeling Traffic Condition
We track the traffic condition at each time stamp

 , as shown in Figure 4. Here, can be the average velocity that

vehicles can traverse on a road segment, or the average travel time

of a landmark edge. This time series of real-time traffic can be

calculated based on the recently received taxi trajectories and/or

road sensors, using some approaches. One method is calculating

the average speed or travel time of the samples on a road.

Figure 4: The framework for traffic prediction

Typically, the traffic condition is updated at a certain frequency ,

 . (5)

Given the accumulated historical traffic conditions , we aim to

predict the traffic condition at a future time , where

 , =1, 2,… (6)

In practice, the delay is configured by user-sending queries,

whereas is often determined by a traffic monitoring system.

Since the traffic condition is usually presented to end users using

discrete states, we map the continuous value into a finite state

space by a discretization function . For example, after

the VE-Clustering algorithm, the travel times of transitions

pertaining to a landmark edge are discretized into a cluster set,

which can be regarded as the state space. After the discretization,

 is converted into a state sequence, which can be

considered as the realization of a stochastic process
 ,

where each is a random variable. Intuitively, the traffic

condition at usually depends on the time a short period before ,
e.g., 1-2 hours, i.e., the past states. Hence, we model this

stochastic process as an mth-order Markov chain [24], stated as:

 (7)

 , . Thus, for simplicity, we define our

problem as: Predict the distribution of given the realization

of
 , i.e., compute the h-step-ahead transition probability

 , (8)

3.2.2 High Dimensional Embedding
Our solution is comprised of the following four steps:

Step 1: Compute 1-step-ahead transition matrix of the mth-order

Markov chain in space using the Bayesian probability model.

We denote the -step-ahead transition probability

 ,

by notation

. Then the -step-ahead transition

matrix of the th-order Markov chain is denoted by

 (9)

For = 1, we can compute the 1-step-ahead transition matrix =

 based on the Bayesian probability theory. That is,

 =

. (10)

The numerator and denominator of Equation 10 are calculated

based on the statistics in the historical data when implementing.

Example 1. Figure 5 shows an exemplary 1-step-ahead transition

matrix
 , where = 2 and the state space is ={1, 2} (1

could be the normal traffic and 2 could indicate a traffic jam). For

instance, the element (at row 11 and column 2) = 0.205 is

the transition probability from { = 1; = 1} to = 2. The value

of is calculated according to Equation 10.

(

)

(

)

 Figure 5: = Figure 6: =

Step 2: Embed the th-order Markov chain into an space by

binding the consecutive variables from
 into a vector.

Basically, when 1, we can still use Equation 10 to compute the

 -step-ahead transition matrix. However, this process is very time

consuming as we need to scan the whole sample space many

times for different . Instead, we compute the -step-ahead

probability by mapping the mth-order Markov chain } from a

 Traffic updating frequency Delay (future) time

 A traffic condition at time t The collection of

 Traffic condition space A finite state space

 () A discretization function : A random variable in

space. Realization of , = () . Order of a Markov chain

 () -step-ahead transition matrix of the th-order Markov chain in

 () -step-ahead transition matrix of the 1st-order Markov chain in

()

 The -step-ahead transition probability of a Markov chain from

state to state b.

H R F

H + R → F

τ

t1

φ=hτ

t2 t3 tn tn+h=tn+φ

τ

space into an dimensional space according to Lemma 1,

as illustrated in Figure 7.

LEMMA 1. Let ⃗ be a random vector of

dimension , where
 is a mth-order Markov chain in the

space , then ⃗
 is a 1st-order Markov chain in the space .

Figure 7: Mapping an mth-order Markov chain from to spaces

Step 3: Compute the -step-ahead transition matrix of the

converted Markov chain in the space.

According to Lemma 1, ⃗
 is a 1st-order Markov chain in the

 space. We denote the -step-ahead transition matrix in by:

 (11)

for , =1, 2,…, .

Let

 be the 1-step-ahead

transition matrix of ⃗ in the embedded space , i.e.,

 ⃗

 ⃗

 ={

 {

}

 (12)

where
 is the element on row and

column
 of the transition matrix .

According to the the Chapman-Kolmogorov equation [15], the -

step-ahead transition matrix for ⃗ is multiplied by itself times,

i.e., . So,

 is an element of at

the row and column

 .

Note that this property does not hold for the original th-order

Markov chain. That’s the reason why we embed the th-order

Markov chain into the space.

Example 2. Figure 6 presents the 1-step-ahead transition matrix ,

which is constructed by applying Equation (12) to the matrix P

shown in Figure 5. For example,

 = (⃗ | ⃗)

 = (|) = 0.205. Yet,

 = (⃗ | ⃗)

 = (|)= 0,

Since 2 and never appear in the historical data .

Step 4: Compute the -step-ahead transition matrix in

space based on the .

Given and , the -step-ahead transition matrix of in

the space can be computed directly as follows.

Example 3. Figure 8 presents the matrix = , i.e., to the power

of 5, which is the 5-step-ahead transition matrix of ⃗ in the

space (m=2). In the original space, note

=0.566+0.203=0.769,

Where

 and

 are obtained from . In this way, we

compute other elements in , shown in Figure 9.

Formally, we have

(

)

(

)

 Figure 8: = Figure 9:

 {

 (13)

In this way, we only need to pre-compute the 1-step-ahead

transition matrix of in space while and can

be calculated online (1), which is more efficient than using a

Bayesian probability model like Equation 10. The time cost for

computing the matrix is , where < 2.376 [4]. In

the implementation, since both and (number of states) are

small (e.g., 3; 5), the online computation is affordable.

To further improve the efficiency, we can compute with

some small =2, 3 in advance.

As a result, we obtain the future traffic condition (a distribution of

states) ahead of the present time. The value (a representative

travel time) of a state can be calculated in terms of the mean of the

samples pertaining to the state. Though in our system this

condition is represented as a distribution of travel times associated

with a landmark edge at time , the method can be generally

applied to other datasets and traffic prediction problems.

4. SERVICE PROVIDING
This section details the service providing process, which consists

of 5 steps, as shown in the left part of Figure 1:

1) Query Sending. A user sends a query (to the

Cloud. Specifically, , , 0 1

(typically stored in a mobile phone) is a custom factor indicating

how fast a user usually drives on the ith landmark edge, and

denotes the number of landmark edges. The larger the value

has, the faster the user drives on the ith edge. Initially, each can

be set as a default value, and be gradually adapted to the user’s

driving habits in terms of the user’s driving paths collected later.

2) Route Computing. In this step, the Cloud first chooses a proper

landmark graph according to the day type and weather of the

departure time . Then, a two-stage routing algorithm is

performed to find out a time-dependent fastest route. In the first

stage, we search the landmark graph (see Figure 2 C for an

instance) for a rough route represented by a sequence of

landmarks, using a time-dependent routing algorithm, like [5]. For

example, Figure 10 A) depicts the travel time distribution of a

landmark edge in a given time slot, where () denotes 5

categories of travel times. Then, we convert this distribution into a

cumulative frequency distribution function and fit it with a

continuous cumulative frequency curve [3] depicted in Figure 10

B). Given a user’s custom factor = 0.7 of this landmark edge,

we can particularly determine the travel time of the user on this

landmark edge and in this time slot. Note that the traffic

conditions (travel time distributions) on a landmark edge at a

future time are computed using the method proposed in Section

3.2. For instance, we can respectively pre-calculate the travel time

distribution of a landmark edge at the time that is 15, 30, 45, and

60 minutes later then the present time. Then, in the routing

algorithm, we can choose the distribution of the time slots

according to the time that the user will arrive at the landmark edge.

In the second stage, we perform a detailed routing that finds the

fastest path (based on speed constraints) connecting consecutive

landmarks in the rough route generated in the first stage. This

Yj Yj+1 Yj+m-1 Yj+m

Yj Yj+1 Yj+h

The S space

The Sm space

two-stage routing algorithm is even more efficient than existing

methods. First, the rough routing on a landmark graph is very fast

as a landmark graph is only a subset of the original road network.

Second, the search space of the detailed routing becomes smaller

than before as the distance between two landmarks is shorter than

that between the original start and end points.

A) Travel time distribution B) Cumulative frequency distribution

Figure 10: Travel time w.r.t. custom factor

3) Route Downloading and 4) Path Logging. The Cloud sends

the computed driving routes along with the travel time

distributions of the landmark edges contained in the driving route

to the phone. Later, the mobile phone logs the user’s driving path

with a GPS trajectory, which will be used to recalculate the user’s

custom factor . The more a driver uses this system, the deeper

this system understands the driver; hence, a better driving

direction service can be provided.

5) Adapting custom factor. For simplicity, we choose one

to demonstrate the updating process. Initially, we assign a

default value, e.g., 1.0. Let
 be the the client sent to the

cloud at the M-th query, and be the cumulative

distribution function (refer to Figure 10B for an example) of the

ith landmark edge. After traveling, we calculate the real travel

time of the landmark edges
 by the recorded GPS traces.

Then the mobile client computes the new custom factor by:

 ̃

 (
) (14)

To obtain a stable value for , we need to study the most recent

driving routes of a user instead of a single trip. Meanwhile, the

most recent driving paths should be more valuable in calculating

 than those distant past. Therefore, we compute the new by

using a weighted moving average(WMA) shown as below

 ̃

 ̃

 (15)

where is the window size of the moving average.

In the next query, the
 will be sent to the Cloud. Note that

both path recording and learning are performed in a user’s

mobile phone. Therefore, the user’s privacy is preserved.

5. Evaluation
Considering that the travel time of a driving route depends on

route, traffic and driver, we evaluated the following two aspects in

the experiments. 1) Does our method precisely predict the future

traffic conditions? 2) Does our method learn a user’s diver

behavior accurately and estimate the travel time of a route for the

user precisely? If the answers are yes, our service is valuable.

5.1 Datasets
Taxi Trajectories: We build our system using GPS trajectories

generated by 33,000 taxis over a period of 3 months. The total

distance of the dataset is over 400 million kilometers and the total

number of GPS point reaches 790 million. The average sampling

interval of the dataset is 3.1 minutes and the average (Euclidian)

distance between two consecutive points is about 600 meters.

Road Network: The adaptive routing is based on the road network

of Beijing which has 106,579 road nodes and 141,380 segments.

Singapore traffic data: This dataset includes the updates (in a

frequency of every 26 minutes on average) of traffic conditions on

50 road segments in Singapore from Nov. 1- Dec. 13 (43 days).

5.2 Evaluation on Traffic Prediction
Framework: 1) Prediction on a landmark edge: We use the taxi

trajectories of the first two months as a training set (for offline

mining) and choose 12 days, consisting of 6 workdays and 6

weekends, from the trajectories of the third month as a test set. 6

out of the 12 days had normal weather conditions, and the

remainder had severe weather conditions. We use the expectation

of the travel times as a predictor calculated based on the inferred

distribution. The ground truth of a given landmark edge is

computed in terms of the average travel time of the transitions

(from the test dataset) pertaining to the landmark edge in the time

slot to be inferred. 1,000 landmark edges with over 10 transitions

are chosen for the evaluation. 2) Prediction on a road segment:

We also test the performance of our method predicting traffic on

road segments, using the Singapore traffic data.

Baselines: We compare our approach with two baseline

methods: 1) method (T-Drive [26]). This method selects the

travel time distribution from the historical traffic patterns

according the time slot to be inferred, and then transfer the

distribution into a travel time expectation. 2) method (ARIMA

[10], whose order is determined using AIC criterion). This is a

well-known baseline method predicting the traffic conditions on a

landmark edge (or a road segment) in terms of the samples (e.g.,

taxi trajectories) received a certain time (e. g, 1 or 2 hours) earlier

than the time to be inferred.

Measurements: To quantify the accuracy of the traffic inference,

we use the root mean square error (RMSE) defined as:

 √

 ̂

 (16)

where is the real travel time, ̂ is the predicted travel time and

 is the number of predictions. Using this measurement, we study

the performance of our approach changing over . If not specified,

the default is 2, i.e., second-order Markov Model.

Figure 11 a) shows the overall RMSE (the lower, the better) with

 =90min, =15min, between 2pm-7pm on weekdays. Clearly,

 outperforms both the and methods, especially in the

rush hours (6pm‐7pm), in which the traffic patterns (likely

affected by multiple factors) change significantly and in complex

ways; hence becomes difficult to predict for the baseline methods.

Generally speaking, our method models a set of historical traffic

patterns (for a landmark edge) conditioned by the recent traffic

flows, . Therefore, our method chooses different

patterns to predict future traffic in terms of the . However, the

stand alone method only has one pattern corresponding to a

given time slot.

a) w.r.t. time of day(=90min) b) w.r.t. (=30min)

Figure 11: RMSE of different methods

C1 C2 C3 C4 C5
0.0

0.1

0.2

0.3

p
ro

p
o

rt
io

n

clusters

0.10

0.30
0.32

0.25

0.03

0.3

0.7

0.10

0.40

0.72

0.97 1.00

197 272

150 200 250 300 350
0

1

travel time (seconds)

2pm 3pm 4pm 5pm 6pm 7pm
0

40

80

120

160

200

R
M

S
E

(s
)

time of day

 H(T-Drive)

 R(ARIMA)

 H+R(Ours)

30 60 90 120 150 180 210 240
40

60

80

100

120

140

160

R
M

S
E

(s
)

(min)

 H(T-Drive)

 R(ARIMA)

 H+R(Ours)

Figure 11 b) plots the RMSE changing over with =30 minutes.

As the delay increases, the performance of these approaches

decreases while our approach has smaller RMSE (about a 30-

second gap) than the competing methods. In short, given the same

prediction error, our method is more capable of predicting traffic

conditions at a farther time than and methods.

Figure 12 a) visualizes the distribution of residual error of the

three methods, where has a clear advantage over and .

Figure 13 investigates the performance varying in the order , of

our Markov model. Obviously, the 2nd-order model outperforms

the 1st-order model because the traffic condition of a future time

depends on not only the state right before but also a sequence of

traffic states in the near past of . However, the larger we select,

more data and heavier computation are needed. In practice, it is

not necessary to choose a very large given that the traffic

condition does not rely on the distant past.

Figure 12: Distribution of residual error Figure 13. RMSE vs

Table 2 shows the RMSE of our method (with or without

considering the weather) in predicting the future traffic conditions,

using the time slot 6pm-7pm of the test days having a severe

weather condition. Clearly, weather information brings significant

benefit to our model. Given limited space we do not present more.

Table 2: RMSE considering weather information

 (min) with weather (s) without weather (s)

30 90.6 106.6

60 98.6 107.1

90 97.7 140.4

Figure 14 shows the overall precision of the predictions on road

segments using the Singapore traffic data. Here, the traveling

speed of a road is discretized into four classes representing

different volumes of traffic flows according to a pre-defined

schema, e.g., green denotes >40km/h and yellow represents 20-

40km/h. Though both ours and the method outperform the

method, our approach did not show clear advantages over the

method according to the aggregated results (over 50 segments).

But, our method does have a significantly better performance than

the two baselines when predicting the traffic conditions on some

road segments. So, we further explore these road segments,

aiming to reveal the features (of roads) supporting our method.

The Shrewsbury road, which is one of the good road segments

(for ours), has a relatively complex linking structure in the road

network, denoted as a blue segment in Figure 16 A). There are

five kinds of directions and throughput that can happen at one of

its terminal points (refer to the white arrows illustrated in Figure

16 B). Hence, the traffic pattern on this road becomes more

complex and difficult to model. This claim is further justified by

the traffic conditions plotted in Figure 16 C) where the travel

speed is chaotic and disorderly over time of day. Neither nor

can handle such a situation very well, and thus drops behind ours,

as shown in Figure 15.

Figure 16: Traffic pattern study on Shrewsbury road

W.r.t. the road segments where our method is no better than the

baselines, we found they have simple connecting structures in the

road network. As demonstrated in Figure 17, Pan Island Expy is a

straight road segment with only one link (to other road segments)

at its terminal points (refer to Figure 17 A)). Thus, the traffic

pattern on this road becomes similarly periodical and easy to

predict (see Figure 17 B)) for the baselines. However, insufficient

data (only 43 days) affects the precision of our model in inferring

multiple .

Figure 17: Traffic pattern study on Pan Island Expy road

As shown in Table 3, we further studied the average number of

links connecting to a terminal point (node) in both the Beijing

landmark graph and Singapore roads. Since a landmark (in

Beijing data) usually has more links than a road segment (from

Singapore), our method has a better overall performance on the

Beijing dataset. Meanwhile, our method is more capable of

predicting road segments with relatively more links to others.

Given sufficient data, our method will show a higher performance.

Table 3: Average number of links at a terminal point

Datasets On all segments On good segments

Beijing landmark 3.1 8.7

Singapore 1.9 2.5

5.3 Evaluation on Routing
It is very difficult to directly evaluate whether a customized route

(provided by our system) for a real user is the actually fastest one

due to the following two reasons. First, a user can only drive on

one route at a given time. You would never know if other routes

are better (for the user) than the driven one. Requesting a different

user to travel another route simultaneously would bring

unexpected factors (caused by their different drive behaviors and

-300 -150 0 150 300
0.0

0.2

0.4

 H(T-Drive)

 R(ARIMA)

 H+R(Ours)

p
ro

p
o
rt

io
n

residual error (s)

2pm 3pm 4pm 5pm 6pm 7pm
40

60

80

100

120

140

160

R
M

S
E

 (
s
)

time of day

 m=2,=30, =30

 m=1,=30, =30

 m=1,=30, =60

60 90 120 150 180
0

5

10

15

20

25

R
M

S
E

(k
m

/h
)

 (minutes)

 H(T-Drive)

 R(ARIMA)

 H+R(Ours)

1
1

/2
9

 0
4

:1
8

1
1

/2
9

 0
9

:2
4

1
1

/2
9

 1
4

:0
5

1
1

/2
9

 1
8

:3
1

1
1

/2
9

 2
2

:4
6

1
1

/3
0

 0
3

:3
3

1
1

/3
0

 0
8

:5
0

1
1

/3
0

 1
3

:2
6

1
1

/3
0

 1
7

:4
8

1
1

/3
0

 2
2

:0
4

1
2

/1
 0

2
:4

4

1
2

/1
 0

7
:1

9

1
2

/1
 1

2
:0

1

1
2

/1
 1

6
:2

5

1
2

/1
 2

1
:1

7

1
2

/2
 0

1
:3

8

1
2

/2
 0

6
:5

4

1
2

/2
 1

1
:5

2

1
2

/2
 1

5
:5

9

1
2

/2
 2

0
:4

9

1
2

/3
 0

1
:0

9

1
2

/3
 0

6
:3

6

1
2

/3
 1

1
:2

8

1
2

/3
 1

5
:5

2

1
2

/3
 2

0
:0

5

0

20

40

60

80

100

s
p

e
e

d
(k

m
/h

)

A) A complex road B) Street view of the complex road

C) The traffic patterns on the complex road

A) A simple road

1
1
/2

9
 0

4
:1

8

1
1
/2

9
 0

9
:2

4

1
1
/2

9
 1

4
:0

5

1
1
/2

9
 1

8
:3

1

1
1
/2

9
 2

2
:4

6

1
1
/3

0
 0

3
:3

3

1
1
/3

0
 0

8
:5

0

1
1
/3

0
 1

3
:2

6

1
1
/3

0
 1

7
:4

8

1
1
/3

0
 2

2
:0

4

1
2
/1

 0
2
:4

4

1
2
/1

 0
7
:1

9

1
2
/1

 1
2
:0

1

1
2
/1

 1
6
:2

5

1
2
/1

 2
1
:1

7

1
2
/2

 0
1
:3

8

1
2
/2

 0
6
:5

4

1
2
/2

 1
1
:5

2

1
2
/2

 1
6
:0

5

1
2
/2

 2
0
:2

1

1
2
/3

 0
0
:4

6

1
2
/3

 0
6
:0

7

1
2
/3

 1
1
:0

5

1
2
/3

 1
5
:2

2

1
2
/3

 1
9
:3

7

1
2
/3

 2
3
:5

4

40

60

80

100

s
p
e
e
d
(k

m
/h

)

B) The traffic patterns on the simple road

S
p

e
e

d
 (

k
m

/h
)

Methods
Precision (over 𝜑)

90min 120min

H(T-Drive) 0.686 0.689

R(ARIMA) 0.643 0.651

Ours 0.683 0.688

Figure 14: Overall precision of

predictions on road segments Figure 15: RMSE of the road

knowledge) to the evaluation. Second, it is not reasonable to

request a single user to drive two different routes separately since

the user can learn from their past driving experiences. So, the

route driven later will benefit from the first test.

To address the above challenges, instead of directly finding the

fastest driving route for a particular user, we first record the routes

the user has driven with GPS logs and then estimate the travel

time of these routes based on our method and baselines

respectively, using the GPS logs as ground truths. More

specifically, by mapping a route to a landmark graph, we

convert into a sequence of landmark edges . Then,

we measure the accuracy of the estimation using the absolute

percentage error (APE), defined as Equation (17).

 ̂

 (17)

where and ̂ are the real and predicted travel times of .

Here, we use two users’ 1-year GPS logs (released in GeoLife

dataset [28][29]) to determine the ground truth of the exact road

segments a driver traversed and corresponding travel times. As

proved in [26], T-Drive outperforms major routing services, such

as speed-constraint-based and real-time-traffic-based methods, we

only compare our approach with T-Drive here. Initially, we set

 =1.0 on all the landmark edges for our method.

Figure 18 illustrates the self-adaptive process for learning user

A’s custom factor on two different routes. First, the estimated

travel time of our method gradually becomes accurate (measured

by APE) and converges as the user A traverses these two routes

more, showing advantage beyond that using a fixed . For

instance, when the user A traversed Route1 over 20 times, the

APE of our method decreases to 0.15 while that of a fixed = 1.0

is still 0.3. Choosing a small = 0.3, T-Drive has a relatively

minor APE in the first several days, however, it drops behind our

method after user A has traveled the route several times. This is

because a user’s driving behavior changes over the times she has

traveled a route. Second, the user A has different drive behaviors

on these two routes. For example, our method can reach an APE

of 0.15 after the user A traversed Route2 10 times while Route1

needs to be traversed 20 times before APE approaches 0.15.

(a) Route1 (b) Route2

Figure 18: Self-learning user A’s custom factor

 (a) User A (b) User B

Figure 19: Learning different two users’ factors on the same route

Figure 19 plots the self-tuning processes of two users traversing

the same route, demonstrating the fact that different users have

different custom factors tuned in different ways. For instance, we

see the clear difference between these two users’ after they

traversed the route 11 times. Note that is a vector rather than a

single value and a route could include several landmark edges.

According to these results, we should neither use the same custom

factor for different users nor set a consistent factor for a particular

user on different routes. Additionally, the custom factor of a user

is dynamic and changes over the user’s driving experiences and

skills on a road. So, our self-adaptive routing out-performs T-

Drive which is better than other major services.

Efficiency: Besides being effective, our system is also efficient

due to the following reasons. First, a landmark graph is only a

subset of the original road network (8% in node size, 16% in edge

size). So, the rough routing on the landmark graph is very fast.

Also, a rough route indicating the key directions reduces the

search area on a road network and enables parallel computing

when performing the detailed routing [26]. Second, the high

dimensional embedding approach speeds up the traffic prediction

tremendously, as depicted in Figure 20. After calculating the 1-

step transition matrix which has the same computation with the

statistic-based approach, our method computes the h-step (2)

very efficiently. The time cost shown in Figure 21 is an average

time on calculating six transitions, =1-6. Third, we only include

the items (about 0.1% of according to a study) with significant

changes, sending a query to the Cloud. To reveal the performance

of our method (regardless of system design), we test our system

on a single server with 2.67GHz CPU and 16GB RAM (using a

single thread without optimization) in the Cloud, as shown in

Figure 21. The mobile client is running on a Windows smartphone

with 1GHz CPU and GPRS connection. Roughly, we can answer

1,000 queries per second using 30 (24-core) servers in a Cloud.

6. RELATED WORK

6.1 Traffic Estimation
There are a few projects [1][2][9][11][12][25] aiming to learn

historical traffic patterns, estimate real-time traffic flows and

forecast future traffic conditions on some road segments in terms

of floating car data [23], such as GPS trajectories as well as Wi-Fi

and GSM signals. However, these methods are road-segment-

level inferences, which predict the traffic conditions on individual

road segments with enough samples. Although our prediction

model can also be used on a road segment, our work differs from

the above methods in the following aspects. First, by using the

landmark graphs, our work well models the city-wide traffic

conditions from low sampling-rate trajectories (e.g., 3-5minutes

per sample), and enables a real routing service. Second, the

routing service considers the driver behavior both of an end user

(for whom the route is being computed) and taxi drivers. Third,

according to the experimental results our prediction model

outperforms competing methods, such as ARIMA [10].

6.2 Smart Routing
To optimize taxi drivers’ income, literatures [7][19] has proposed

route recommendation services for a taxi driver by analyzing fleet

trajectories. Here, they focus on taxi drivers’ pick-up behavior in

creating higher profit (e.g., how to easily find passengers). So, a

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5 Self-adaptive

 T-Drive(=1.0)

 T-Drive(=0.3)

A
P

E

number of traverses

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
P

E

number of traverses

 Self-adaptive

 T-Drive(=1.0)

 T-Drive(=0.5)

0 2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8
 Self-adaptive

 T-Drive(=1.0)

=(0.68,0.16,0.48,...)

A
P

E

number of traverses

0 2 4 6 8 10 12
0.3

0.4

0.5

0.6

A
P

E

number of traverses

 Self-adaptive

 T-Drive(=1.0)

=(0.25,0.11,0.58,...)

1 2 3 4 5 6

0.01

0.1

1

10

100

1000

ru
n
ti
m

e
(m

s
)

h-step

 Statistic approach

 Embedding approach

Mobile T Cloud T

Query

send

144

ms

Predict

traffic

25

ms
Results
down

287
ms

Route
compute

326
ms

Learning

new 𝛂

20

us

Build

landmark
6h

Figure 21: Time cost study on

operations of our system
Figure 20: Efficiency of high

dimensional embedding

method

normal end user cannot benefit from the recommended routes.
Meanwhile, the traffic conditions are not involved in their systems.

Papers like [17][18][21] present work that aims to provide

personalized routes according to a user’s driving preferences in

choosing a road, using user-computer interaction or implicit

modeling. The recommended routes from these works are not

optimized by travel time. Different from these works, the route we

recommend to a driver is the practically fastest one customized for

a particular driver, considering both traffic conditions of a future

time (when the computed route will be actually traversed) and the

behavior of the driver. Other factors, like day of the week, and
weather conditions, are also considered in our routing model.

Existing work [6][8][26] also aims to use user-generated GPS

trajectories to improve routing services. The work presented in

this paper significantly differs from those examples, especially

our previous publication T-Drive [26] in the following five

aspects. 1) T-Drive does not consider the drive behavior of end

users for whom a route is computed. Also, a user’s mobile phone

does not provide any knowledge of the user. But, our method self-

learns different users’ drive behaviors (varying in different roads

and the times they traversed a road) according to the recent GPS

logs, automatically and gradually, in their own mobile phones.

The interaction between mobile and Cloud enables us to find the

practically fastest driving route customized for a user. 2) T-Drive

only employs the historical traffic patterns in the routing process.

However, we infer the traffic conditions at a future time (when a

road is actually driven) based on the historical patterns and real-

time traffic flow. The future traffic conditions are involved in the

routing. 3) We incorporate other resources from the Web, like

weather condition records, into the routing model. 4) We

differentiate different taxi drivers’ knowledge in different regions.

This helps us better model the traffic patterns and taxi drivers’

knowledge in choosing a route. 5) Given the above differences,

we estimate the travel time of a route more precisely than T-Drive

according to the extensive evaluations; our method hence can find
better driving routes for a particular user.

7. CONCLUSION
This paper describes a system for computing shortest-time driving

routes using traffic information and driver behavior. Specifically,

the system mines historical traffic patterns (from GPS trajectories

generated by taxicabs) and incorporates recent real-time traffic

information (from the same fleet or road sensors) to predict future

traffic conditions at the time when the computed route is actually

driven. The system incorporates day of the week, time of day,

weather conditions, and individual driving strategies (both of the

fleet drivers and of the end user for whom the route is being

computed). We build our system with a real-world dataset

generated by over 33,000 taxis in Beijing, and evaluate our

services with extensive experiments and in-the-field studies. The

prediction model is also tested using a Singapore traffic dataset.

The results show that: 1) our prediction method considering both

historical patterns and real-time traffic, , outperforms the

approaches separately using and in predicting the future

traffic conditions, especially, in handling road segments with

relatively more links (to other segments). The proposed high

dimensional embedding method speeds up the 2nd-order Markov

model and enables the online traffic prediction. 2) Our system

accurately estimates the travel time of a driving route for a

particular user by self-tuning the custom factors (on different

roads) for the user in terms of the user’s historical GPS logs. So,
we can find practically fast routes customized for a particular user.

In the future, we plan to learn a user’s driver behavior in a mobile

phone, with a more efficient, accurate and advanced method.

8. REFERENCE
[1] Bejan, A., I., Gibbens, R., J., Evans D., Beresford, A., R., Bacon, J.,

Friday A. Statistical Modelling and Analysis of Sparse Bus Probe Data

in Urban Areas, In Proc. ITS, 2010.

[2] Castro-Neto, M., Jeong, Y. S., Jeong, M., K., Han, L., D. Online-SVR

for short-term traffic prediction under typical and atypical traffic

conditions. Expert systems with applications. 36, 2009

[3] Chhikara, R., S., inverse L. F. L. The inverse Gaussian distribution:

theory, methodology, and applications, 1989.

[4] Coppersmith, D., Winograd S. Matrix multiplication via arithmetic

progressions. Journal of symbolic computation; 1990:251--280.

[5] Ding, B., Yu, J. X., Qin, L. Finding time-dependent shortest paths over

large graphs. In Proc. EDBT; 2008:205-216.

[6] Fawcett, J. and P. Robinson, Adaptive Routing for Road Traffic. IEEE

Computer Graphics and Applications, 2000. 20(3): p. 46-53.

[7] Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser M., Pazzani M. J. An

Energy-Efficient Mobile Recommender System. In Proc. KDD 2010.

[8] Gonzalez H., Han J., Li X., Myslinska M., Sondag J. P. Adaptive fastest

path computation on a road network: A traffic mining approach. In Proc.

VLDB, 2007.

[9] Guehnemann A., Schaefer R. P., Thiessenhusen K. U., Wagner P.

Monitoring traffic and emissions by floating car data. Institute of

transport studies Australia, 2004.

[10] Hamilton J. Time series analysis: Princeton University Press, 1994.

[11] Herrera, J. C., Work, D. Ban, X., Herring, R. Jacobson, Q. and Bayen, A.

Evaluation of traffic data obtained via GPS-enabled mobile phones: the

Mobile Century field experiment. Transportation Research C, 18, pp.

568–583, 2010.

[12] Herring R., Hofleitner A., Abbeel P., Bayen A. Estimating arterial traffic

conditions using sparse probe data. In Proc. ITS, 2010.

[13] Hunter T., Herring R., Abbeel P., Bayen A. Path and travel time

inference from GPS probe vehicle data. In Proc. Neural Information

Processing Systems foundation (NIPS), 2009.

[14] Kanoulas E., Du Y., Xia T., D. Z. Finding fastest paths on a road

network with speed patterns. In Proc. ICDE, 2006.

[15] Karlin S., Taylor H. M. A first course in stochastic processes, 1975.

[16] Leibowitz, N., Baum, B., Enden, G., Karniel, A. The exponential

learning equation as a function of successful trials results in sigmoid

performance, Journal of Mathematical Psychology, 54(3):338-340, 2010.

[17] Letchner J., Krumm J., and Horvitz E., Trip Router with Individualized
Preferences (TRIP): Incorporating Personalization into Route Planning,

In Proc. IAAI, 2006.

[18] Liu B. Route Finding by using knowledge about the road network. IEEE

Trans. on systems, man and cybernetics. 27 (4), 1997.

[19] Liu, L., Andris, C., Biderman, A., Ratti, C. Uncovering cabdrivers’

behavior patterns from their digital traces. Computers, Environment and

Urban Systems, 2010.

[20] Lou, Y., Zhang, C., Zheng, Y., Xie, X., Huang, Y. Map-matching for

low-sampling-rate GPS trajectories. In Proc. ACM SIGSPATIAL GIS,

2009.

[21] McGinty, L. and Smyth, B. Turas: A Personalized Route Planning

System. In Proc. Sixth Pacific Rim International Conference on AI,

PRICAI, 2000.

[22] Orda, A., Rom R. Shortest-path and minimum-delay algorithms in

networks with time-dependent edge-length. JACM; 1990:625.

[23] Pfoser D. Floating Car Data. Encyclopedia of GIS 2008

[24] Raftery A. E. A model for high-order Markov chains. Journal of the

Royal Statistical Society. Series B (Methodological); 1985:528--39.

[25] Thiagarajan A., et al. VTrack: accurate, energy-aware road traffic delay

estimation using mobile phones. In Proc. of the 7th ACM Conference on

Embedded Networked Sensor Systems, 2009.

[26] Yuan J., Zheng Y., Zhang C. Y., Xie W., Xie, X., Sun, G., Huang, Y. T-
Drive: Driving Directions Based on Taxi Trajectories. In Proc. ACM

SIGSPATIAL GIS, 2010.

[27] Yuan J., Zheng Y., Zhang C. Y., Xie X. An Interactive-Voting based

Map Matching Algorithm. In Proc. MDM, 2010.

[28] Zheng, Y., Chen, Y., Xie, X., Ma, W., Y. GeoLife2.0: A Location-Based

Social Networking Service. In Proc. MDM 2009.
[29] Zheng, Y., Xie, X., Ma, W., Y. GeoLife: A Collaborative Social

Network-ing Service among user, location and trajectory. IEEE

Data Engineering Bulletin, 2010. 33(2), 2010, pp. 32-40

