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ABSTRACT 

This paper presents a Cloud-based system computing customized 

and practically fast driving routes for an end user using (historical 

and real-time) traffic conditions and driver behavior. In this 

system, GPS-equipped taxicabs are employed as mobile sensors 

constantly probing the traffic rhythm of a city and taxi drivers’ 

intelligence in choosing driving directions in the physical world. 

Meanwhile, a Cloud aggregates and mines the information from 

these taxis and other sources from the Internet, like Web maps and 

weather forecast. The Cloud builds a model incorporating day of 

the week, time of day, weather conditions, and individual driving 

strategies (both of the taxi drivers and of the end user for whom 

the route is being computed). Using this model, our system 

predicts the traffic conditions of a future time (when the computed 

route is actually driven) and performs a self-adaptive driving 

direction service for a particular user. This service gradually 

learns a user’s driving behavior from the user’s GPS logs and 

customizes the fastest route for the user with the help of the Cloud. 

We evaluate our service using a real-world dataset generated by 

over 33,000 taxis over a period of 3 months in Beijing. As a result, 

our service accurately estimates the travel time of a route for a 

user; hence finding the fastest route customized for the user.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining, Spatial databases and GIS;  

General Terms 

Algorithms, Experimentation 

Keywords 

Driving directions, trajectory, traffic prediction, cyber-physical. 

1. INTRODUCTION 
Finding fast driving routes saves both the time of a driver and 

energy consumption (as traffic congestion wastes a lot of gas). 

Meanwhile, people are more likely to choose public transportation 

if they can know in advance that the practically quickest driving 

route to a destination is still slower than the public transportation. 

Therefore, this service is important for both end users and 

governments aiming to ease traffic and protect environment. 

Google and Bing Maps have provided the service of finding the 

fastest driving path in terms of the speed constraints of a road 

segment. However, the practical travel time of a driving route is 

usually different from the result calculated based solely on speed 

constraints. Although real-time traffic conditions are posted on 

some road segments, this is meant as basic information and is not 

incorporated into driving direction services. It is frustrating to 

traverse a road segment which was fast when being checked on a 

map while becomes very crowded when being actually driven.  

Essentially, the time that a driver traverses a route depends on 

three aspects: 1) The physical feature of a route, such as distance, 

the number of traffic lights and direction turns; 2) The time-

dependent traffic flow on the route; 3) A user’s drive behavior. 

Given the same route, cautious drivers will likely drive slower 

than those driving aggressively. Also, users’ drive behaviors vary 

in their progressing driving skills and experiences. E.g., traveling 

on an unfamiliar route, a user has to pay attention to the road signs, 

hence drive relatively slowly. Thus, a good routing service should 

consider these three aspects (routes, traffic and drivers), which are 

far beyond the scope of the shortest path computing.  

Usually, big cities have a large number of taxicabs traversing in 

urban areas. To enable efficient taxi dispatch and monitoring, 

taxis are usually equipped with a GPS sensor, which enables them 

to report on their location to a server at regular intervals, e.g., 2~3 

minutes. That is, a lot of GPS-equipped taxis already exist in 

major world cities, generating a huge volume of GPS trajectories 

every day [12][13][26]. Intuitively, taxi drivers are experienced in 

finding the quickest driving routes based on their knowledge. 

When selecting a route, they usually consider multiple factors 

including distance, traffic flows and signals, etc. Consequently, 

these taxi trajectories already have the knowledge of experienced 

drivers, physical routes and traffic conditions. 

In this paper, we propose a cloud-based cyber-physical system for 

computing practically fast routes for a particular user, using a 

large number of GPS-equipped taxis and the user’s GPS-enabled 

phone. First, GPS-equipped taxis are used as mobile sensors 

probing the traffic rhythm of a city in the physical world. Second, 

a Cloud in the cyber world is built to aggregate and mine the 

information from these taxis as well as other sources from the 

Internet like weather forecast. The mined knowledge includes the 

intelligence of taxi drivers in choosing driving directions and 

traffic patterns on road surfaces. Third, the knowledge in the 

Cloud is used in turn to serve Internet users and ordinary drivers 

in the physical world. Fourth, a mobile client, typically running in 

a user’s GPS-phone, accepts a user’s query, communicates with 

the Cloud, and presents the result to the user. The mobile client 

gradually learns a user’s driving behavior from the user’s driving 

routes and supports the Cloud to customize the fastest route for 

the user. The contribution of our work lies in three aspects: 

 Using the intelligence of taxi drivers and traffic patterns 

mined from a large number of taxi trajectories, we propose a 

routing service which self-adapts to a particular user’s 

driving behavior and customizes the fastest path for the user. 

 We infer the future traffic conditions on a road using an 

mth-order Markov model considering both the historical 

traffic patterns and present traffic flow mined from taxi 

trajectories. Then, the predicted future traffic condition is 

integrated into the proposed routing service. We evaluated 

the prediction model with Beijing taxi data as well as 

Singapore traffic data, and found a better performance over 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

KDD’11, August 21–24, 2011, San Diego, California, USA. 

Copyright 2011 ACM 978-1-4503-0813-7/11/08...$10.00. 



some well-known methods using historical patterns or real-

time traffic alone like T-Drive [26] and ARIMA [10]. Using 

a high dimensional embedding approach, we can conduct 

this model online. 

 We built our system with a real dataset generated by 33,000 

taxis in a period of 3 months, and evaluated the system with 

extensive experiments in both effectiveness and efficiency. 

The remainder of this paper is organized as follows. Section 2 

gives an overview of our system. Section 3 presents our driving 

direction service. Section 4 details the processes of traffic 

condition prediction. Section 5 reports on major experimental 

results followed by some discussions. Finally, we summarize the 

related work in Section 6 and draw conclusions in Section 7. 

2. PRELIMINARY 
In this section, we define some terms used in this paper and give 

an overview of our work. 

Definition 1 (Taxi Trajectory): A taxi trajectory    is a sequence 

of GPS points pertaining to one trip. Each point   consists of a 

longitude, latitude and a timestamp    . That is,          
    , where                         .    defines 

the maximum sampling interval between two consecutive points. 

Definition 2. (Road Segment): A road segment   is a directed 

(one-way or bidirectional) edge that is associated with a direction 

symbol (     ), two terminal points (   ,    ), and a list of 

intermediate points describing the segment using a polyline. If 

      =one-way,   can only be traveled from     to    , 

otherwise, people can start from both terminal points, i.e., 

        or         . Each road segment has a length 

         and a speed constraint        , which is the maximum 

speed allowed on this road segment. 

Definition 3. (Route): A Route   is a set of consecutive road 

segments,              , where                   , 

     . The start point and end point of a route can be 

represented as     =      and     =    . 

Figure 1 shows the framework of our system which consists of 

two parts: knowledge discovery and service providing.  

Knowledge discovery: This part is comprised of two steps, offline 

mining and online inference. 1) In the first step, we mine the 

accumulated historical data, including taxis trajectories and 

weather condition records, and build four landmark graphs 

respectively corresponding to different weather conditions 

(normal and severe weather) and day types (weekday and 

weekend). This mining step runs offline and not very often, e.g., 

every month. Here, a landmark is defined as a road segment that 

has been frequently traversed by taxis, and an edge connecting 

two landmarks represents the frequent transition of taxis between 

the two landmarks. Each edge in these landmark graphs is 

associated with a distribution of travel time learned from the taxi 

trajectories. Such landmark graphs can well model taxi drivers’ 

intelligence in finding driving directions and traffic patterns on 

road surfaces. 2) In the online inference step, we calculate the 

real-time traffic on landmark edges according to the recently 

received taxi trajectories, and infer future traffic conditions in 

terms of the real-time traffic and the corresponding landmark 

graph. This process is conducted every 10-20 minutes. 

Service providing:  As shown in the left part of Figure 1, this 

process is comprised of five steps. 1) A user submits a query, 

consisting of a start point   , a destination   , a departure time   

and a custom factor   , from a GPS-enabled mobile phone. Here, 

  can be a future time and   is a vector, which represents how fast 

the user typically drives on different landmark edges.    is set by a 

default value at the very beginning and is gradually updated in 

later services. 2) Using our time-dependent routing algorithm, the 

Cloud computes the fastest driving route for the user according to 

the received query. This routing algorithm uses the traffic 

condition at the time when the road was actually driven. This 

future condition is constantly computed in the online inference.  3) 

The Cloud sends the computed driving route along with the 

distributions of travel times on each landmark edge contained in 

the driving route to the user’s mobile phone. 4) The GPS-phone 

records a GPS trajectory when the user really traverses the route. 

5) The user’s phone computes a new   based on the recorded 

trajectory and the travel time distributions sent from the Cloud. 

 
Figure 1: The framework our system 

3. KNOWLEDGE DISCOVERY 

3.1 Offline Mining 

3.1.1 Modeling Taxi Trajectories 
In practice, to save energy and communication loads, taxis usually 

report on their locations in a very low frequency, like 2-5 minutes 

per point. This increases the uncertainty of the routes traversed by 

a taxi [20][27]. Also, we cannot guarantee that there are sufficient 

taxis traversing on each road segment anytime even if we have a 

large number of taxis. That is, we cannot directly estimate the 

speed pattern of each road segment based on taxi trajectories.  

In our method, we first partition the GPS log of a taxi into some 

taxi trajectories representing individual trips according to the 

taximeter’s transaction records. Then, we employ our IVMM 

algorithm [27], which has a better performance than existing map-

matching algorithms when dealing with the low-sampling-rate 

trajectories, to project a GPS point onto a road segment where the 

point was recorded. As a result, each taxi trajectory is converted 

to a sequence of road segments. 

Based on the preprocessed taxi trajectories, we detect the top-k 

frequently traversed road segments, which are termed as 

landmarks. First, the sparseness and low-sampling-rate of the taxi 

trajectories do not support us to directly calculate the travel time 

for each road segment while we can estimate the traveling time 

between two landmarks (which have been frequently traversed by 

taxis). Second, the notion of landmarks follows the natural 

thinking pattern of people. For instance, the typical pattern that 

people introduce a route to a driver is like this “take I-405 South 

at NE 4th Street, then change to I-90 at exit 11, and finally exit at 

Qwest Field”. Instead of giving turn-by-turn directions, people 

prefer to use a sequence of landmarks (like NE 4th Street) that 

highlight key directions to the destination.  
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After detecting the landmarks, we define the transition between 

two landmarks as below: 

Definition 4. (Transition): Given a trajectory archive, a time 

threshold     , two landmarks  ,  , arriving time   , leaving time 

  , we say   = ( ,  ;   ,   ) is a transition if the following 

conditions are satisfied:  

(I) There exists a trajectory   :          , after map 

matching,    is mapped to a road segment sequence (          ). 

    ,          s. t.   =   ;   =   .  

(II)      ,…,      are not landmarks. 

(III)    =     ;   =      and the travel time of this transition 

          . 

Let     be the set of the transitions connecting      . If      ,  

we say               is a candidate edge, where  

    = {       | ( ,  ;   ,   )    } 

records all the historical arriving and leaving times. The frequency 

of   is the average number of transitions recorded per day, 

denoted as       . Given a minimum frequency threshold  ,   is 

a landmark edge if         . If no ambiguity arises, we denote 

the landmark edge by    . Later, we connect all the landmark 

edges and construct a landmark graph defined as follows: 

Definition 5. (Landmark Graph): A landmark graph    =(  ,   ) is 

a directed graph that consists of a set of landmarks    (conditioned 

by k) and a set of landmark edges    conditioned by   and     . 

We observe (from the taxi trajectories) that different weekdays 

(e.g., Tuesday and Wednesday) almost share similar traffic 

patterns while the weekdays and weekends have different traffic 

patterns. We also find that the traffic pattern varies in weather 

conditions. Therefore, we respectively build different landmark 

graphs for weekday and weekend, and for normal and severe 

weather conditions, like storm, heavy rain, and snow. In total, 

2 2 = 4 landmark graphs are built. The weather condition records 

are crawled from a weather forecast website. 

 

Figure 2. An example of building landmark graph 

Figure 2 illustrates an example of building a landmark graph. If 

we set k = 4, the top-4 road segments (  ,   ,   ,   ) with more 

projections are detected as landmarks. Note that the consecutive 

points (like    and   ) from a single trajectory (   ) can only be 

counted once for a road segment (   ). This aims to handle the 

situation that a taxi was stuck in a traffic jam or waiting at a traffic 

light where multiple points may be recorded on the same road 

segment (though being traversed once). As shown in Figure 2 (C), 

after the landmark detection, we convert each taxi trajectory from 

a sequence of road segments to a landmark sequence, and then 

connect two landmarks with an landmark edge if the transitions 

between these two landmarks conform to Definition 5 (supposing 

  =1 in this example). We propose the landmark graph to model 1) 

the intelligence of the experienced drivers and 2) traffic flow 

patterns on road surfaces during a period of historical time. 

3.1.2 Mining Taxi Drivers’ Knowledge 
Given the transition set     of a landmark edge    , we aim to 

estimate the time-dependent travel time of    . Figure 3 A) plots 

all the travel times of the transitions pertaining to a real landmark 

edge (on weekdays over 3 months). Clearly, the travel times 

gather around some values (like a set of clusters) rather than a 

typical Gaussian distribution. This may be induced by 1) the 

different number of traffic lights encountered by different drivers, 

2) the different routes chosen by different drivers traveling the 

landmark edge, and 3) drivers' personal behavior, skills and 

preferences. Therefore, different from existing methods [14][22] 

regarding the travel time of an edge as a single-valued function 

based on time of day, we regard a landmark edge's travel time as a 

set of distributions corresponding to different time slots.  

Intrinsically, different roads have different time-variant traffic 

patterns. That is, we cannot use a predefined time partition for all 

the landmark edges. Here, we employ our VE-Clustering 

algorithm proposed in [26] to automatically learn a proper time 

partition for each landmark edge based on the information entropy 

of the data (travel times) associated with a landmark edge. This 

approach consists of two phases: V-Clustering and E-Clustering. 

The first phase clusters the travel times pertaining to a landmark 

edge into several categories based on the variance of the travel 

times. The second phase utilizes the information gain to 

automatically learn a proper time partition such that in each time 

slot the distribution of travel time is relatively stable. As a result, 

the travel times of each landmark edge haven been divided into 

some portions (pertaining to different time slots), which are ready 

for distribution computing. 

 
Figure 3. Learning travel time distributions from raw data 

Differentiate taxi drivers’ experiences: Intuitively, different taxi 

drivers have different knowledge in different regions of a city 

(especially a big city). Drivers are more likely to find out smart 

driving routes in a region they are very familiar with. Meanwhile, 

this familiarity and experience will change over the times that a 

driver has traveled in the region. So, when calculating the 

distribution of the travel times, we differentiate taxi drivers’ 

experience based on the times they have traversed the edge. 

Suppose a landmark edge      was traversed by   different taxi 

drivers. Accordingly, the transition set      can be categorized into 

N sample spaces. After VE-Clustering, the time of day is 

partitioned into several time slots. Let    be the travel time 

distribution (of a time slot) computed only based on the sample 

from a taxi driver  , denoted as 

             (
    

  
   

    
 )                       (1) 

where (1, 2, … ,  ) stand for   different travel time clusters of this 

landmark edge and   
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driver  ’s sample space. The progress of a driver’s familiarity with 

a landmark edge is modeled using a Sigmoid learning curve [16] 
(as shown in Figure 3 B), defined as: 

                                               
 

           ;                             (2) 

where       is the familiarity,     are the coefficients, and    is 

the times that the driver   has traversed the landmark edge. 

      is the linear transformation which maps    from [min,  

max] to [-6, 6], where min and max respectively represent the 

minimum and maximum number of transitions (generated by all 

the drivers) on this landmark edge. Then distribution of this time 

slot, denoted by  , is computed by the weighted average: 

                          (
              

     
      

       
 ),          (3)  

Where     is a normalized familiarity of the driver  , calculated as 

                                               
     

      
 
   

.                                  (4) 

Using this method, we obtain the travel time distribution of each 

time slot for each landmark edge. For example, as shown in 

Figure 3 C), in the time slot 9-14, over 60 percent of drivers 

traverse the landmark edge in 3-5 minutes (the green bar), while 

about 30 percent of drivers need 5-10 minutes (the yellow bar) 

and the rest of them even spends 10-14 minutes (the red bar). 

3.2 Online Inference  
In this section, we infer the traffic condition at a future time (F) in 

terms of the landmark graphs built from historical data (H) and 

real-time traffic flow calculated based on recently received taxi 

trajectories (R). In short,        . In our method, we model 

this problem as an mth-order Markov chain, and implement the 

model on-the-fly using a high-dimensional embedding approach. 

Table 1 Notations 

 

3.2.1 Modeling Traffic Condition 
We track the traffic condition                  at each time stamp 

  , as shown in Figure 4. Here,   can be the average velocity that 

vehicles can traverse on a road segment, or the average travel time 

of a landmark edge. This time series of real-time traffic can be 

calculated based on the recently received taxi trajectories and/or 

road sensors, using some approaches. One method is calculating 

the average speed or travel time of the samples on a road. 

 
Figure 4: The framework for traffic prediction 

Typically, the traffic condition is updated at a certain frequency  ,  

                                .           (5) 

Given the accumulated historical traffic conditions  , we aim to 

predict the traffic condition at a future time     , where 

      ,                 =1, 2,…                     (6) 

In practice, the delay   is configured by user-sending queries, 

whereas   is often determined by a traffic monitoring system.  

Since the traffic condition is usually presented to end users using 

discrete states, we map the continuous    value into a finite state 

space   by a discretization function       . For example, after 

the VE-Clustering algorithm, the travel times of transitions 

pertaining to a landmark edge are discretized into a cluster set, 

which can be regarded as the state space. After the discretization,  

                 is converted into a state sequence, which can be 

considered as the realization of a stochastic process             
 , 

where each    is a random variable. Intuitively, the traffic 

condition at    usually depends on the time a short period before   , 
e.g., 1-2 hours, i.e., the past   states. Hence, we model this 

stochastic process as an mth-order Markov chain [24], stated as: 

                                  

                                                  (7) 

     ,          . Thus, for simplicity, we define our 

problem as: Predict the distribution of      given the realization 

of        
 , i.e., compute the h-step-ahead transition probability 

                                              ,       (8) 

3.2.2 High Dimensional Embedding  
Our solution is comprised of the following four steps: 

Step 1: Compute 1-step-ahead transition matrix of the mth-order 

Markov chain in   space using the Bayesian probability model. 

We denote the  -step-ahead transition probability 

                           
                      ,       

by notation  
             

 
   

. Then the  -step-ahead transition 

matrix of the  th-order Markov chain is denoted by 

                                        
             

 
   

                             (9) 

For   = 1, we can compute the 1-step-ahead transition matrix   = 

    
 based on the Bayesian probability theory. That is, 
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.                       (10) 

The numerator and denominator of Equation 10 are calculated 

based on the statistics in the historical data when implementing. 

Example 1. Figure 5 shows an exemplary 1-step-ahead transition 

matrix       
 , where   = 2 and the state space is  ={1, 2} (1 

could be the normal traffic and 2 could indicate a traffic jam). For 

instance, the element (at row 11 and column 2)      = 0.205 is 

the transition probability from {  = 1;    = 1} to    = 2. The value 

of       is calculated according to Equation 10.  
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   Figure 5:   =        Figure 6:   =      

Step 2: Embed the  th-order Markov chain into an    space by 

binding the consecutive   variables from         
  into a vector. 

Basically, when   1, we can still use Equation 10 to compute the 

 -step-ahead transition matrix. However, this process is very time 

consuming as we need to scan the whole sample space   many 

times for different  . Instead, we compute the  -step-ahead 

probability by mapping the mth-order Markov chain    } from a 

  Traffic updating frequency   Delay (future) time  

   A traffic condition at time t   The collection of    

  Traffic condition space   A finite state space 

 ( ) A discretization function  :        A random variable in   

space.    Realization of   ,   = (   )   .   Order of a Markov chain 

 ( )  -step-ahead transition matrix of the  th-order Markov chain in    

 ( )  -step-ahead transition matrix of the 1st-order Markov chain in    

    
( )

 The  -step-ahead transition probability of a Markov chain from 

state   to state b. 

 

H R F

H + R → F
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t2 t3 tn tn+h=tn+φ 
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space   into an   dimensional space    according to Lemma 1, 

as illustrated in Figure 7. 

LEMMA 1. Let  ⃗                      be a random vector of 

dimension  , where        
  is a mth-order Markov chain in the 

space  , then   ⃗      
  is a 1st-order Markov chain in the space   . 

 
Figure 7: Mapping an mth-order Markov chain from   to    spaces 

Step 3: Compute the  -step-ahead transition matrix      of the 

converted Markov chain in the    space. 

According to Lemma 1,   ⃗      
  is a 1st-order Markov chain in the 

   space. We denote the  -step-ahead transition matrix in    by:  

       
             

    
     

 
   

                            (11)  

for          ,  =1, 2,…,  .                       

Let          
             

    
     

 
   

           be the 1-step-ahead 

transition matrix of  ⃗   in the embedded space   , i.e.,  
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    (12)        

where               
  is the element on row            and 

column   
  of the transition matrix  .          

According to the the Chapman-Kolmogorov equation [15], the  -

step-ahead transition matrix for  ⃗   is   multiplied by itself   times, 

i.e.,        . So,  
             

    
     

 
   

  is an element of    at 

the row            and column   
    

     
 . 

Note that this property does not hold for the original  th-order 

Markov chain. That’s the reason why we embed the  th-order 

Markov chain into the    space. 

Example 2. Figure 6 presents the 1-step-ahead transition matrix  , 

which is constructed by applying Equation (12) to the matrix P 

shown in Figure 5. For example, 

      =  ( ⃗          | ⃗        ) 

          =   (             |           )       = 0.205. Yet, 

      =  ( ⃗          | ⃗        ) 

          =   (             |           )= 0,  

Since      2 and        never appear in the historical data  . 

Step 4: Compute the  -step-ahead transition matrix      in   

space based on the     . 

Given   and     , the  -step-ahead transition matrix of        in 

the   space can be computed directly as follows.  

Example 3. Figure 8 presents the matrix     =  , i.e.,   to the power 

of 5, which is the 5-step-ahead transition matrix of   ⃗    in the   
 

space (m=2). In the original   space, note 

                             
   

       
   

       
   

=0.566+0.203=0.769, 

Where       
   

 and       
   

 are obtained from   . In this way, we 

compute other elements in     , shown in Figure 9. 

Formally, we have 
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        Figure 8:      =                               Figure 9:      
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In this way, we only need to pre-compute the 1-step-ahead 

transition matrix      of      in   space while      and      can 

be calculated online (  1), which is more efficient than using a 

Bayesian probability model like Equation 10. The time cost for 

computing the matrix      is           , where   < 2.376 [4]. In 

the implementation, since both   and     (number of states) are 

small (e.g.,     3;       5), the online computation is affordable. 

To further improve the efficiency, we can compute      with 

some small  =2, 3 in advance. 

As a result, we obtain the future traffic condition (a distribution of 

states)   ahead of the present time. The value (a representative 

travel time) of a state can be calculated in terms of the mean of the 

samples pertaining to the state. Though in our system this 

condition is represented as a distribution of travel times associated 

with a landmark edge at time    , the method can be generally 

applied to other datasets and traffic prediction problems. 

4. SERVICE PROVIDING 
This section details the service providing process, which consists 

of 5 steps, as shown in the left part of Figure 1: 

1) Query Sending. A user sends a query (            to the 

Cloud. Specifically,                ,      , 0     1 

(typically stored in a mobile phone) is a custom factor indicating 

how fast a user usually drives on the ith landmark edge, and   

denotes the number of landmark edges. The larger the value    

has, the faster the user drives on the ith edge. Initially, each    can 

be set as a default value, and be gradually adapted to the user’s 

driving habits in terms of the user’s driving paths collected later. 

2) Route Computing. In this step, the Cloud first chooses a proper 

landmark graph according to the day type and weather of the 

departure time   . Then, a two-stage routing algorithm is 

performed to find out a time-dependent fastest route. In the first 

stage, we search the landmark graph (see Figure 2 C for an 

instance) for a rough route represented by a sequence of 

landmarks, using a time-dependent routing algorithm, like [5]. For 

example, Figure 10 A) depicts the travel time distribution of a 

landmark edge   in a given time slot, where (     ) denotes 5 

categories of travel times. Then, we convert this distribution into a 

cumulative frequency distribution function and fit it with a 

continuous cumulative frequency curve [3] depicted in Figure 10 

B). Given a user’s custom factor   = 0.7 of this landmark edge, 

we can particularly determine the travel time of the user on this 

landmark edge and in this time slot. Note that the traffic 

conditions (travel time distributions) on a landmark edge at a 

future time are computed using the method proposed in Section 

3.2. For instance, we can respectively pre-calculate the travel time 

distribution of a landmark edge at the time that is 15, 30, 45, and 

60 minutes later then the present time. Then, in the routing 

algorithm, we can choose the distribution of the time slots 

according to the time that the user will arrive at the landmark edge. 

In the second stage, we perform a detailed routing that finds the 

fastest path (based on speed constraints) connecting consecutive 

landmarks in the rough route generated in the first stage. This 

Yj Yj+1 Yj+m-1 Yj+m

Yj Yj+1 Yj+h

The S space

The Sm space



two-stage routing algorithm is even more efficient than existing 

methods. First, the rough routing on a landmark graph is very fast 

as a landmark graph is only a subset of the original road network. 

Second, the search space of the detailed routing becomes smaller 

than before as the distance between two landmarks is shorter than 

that between the original start and end points. 

     
A) Travel time distribution      B) Cumulative frequency distribution  

Figure 10: Travel time w.r.t. custom factor 

3) Route Downloading and 4) Path Logging. The Cloud sends 

the computed driving routes along with the travel time 

distributions of the landmark edges contained in the driving route 

to the phone. Later, the mobile phone logs the user’s driving path 

with a GPS trajectory, which will be used to recalculate the user’s 

custom factor  . The more a driver uses this system, the deeper 

this system understands the driver; hence, a better driving 

direction service can be provided. 

5) Adapting custom factor. For simplicity, we choose one      

to demonstrate the updating process. Initially, we assign    a 

default value, e.g., 1.0. Let   
    be the    the client sent to the 

cloud at the M-th query, and         be the cumulative 

distribution function (refer to Figure 10B for an example) of the 

ith landmark edge. After traveling, we calculate the real travel 

time of the landmark edges   
    by the recorded GPS traces. 

Then the mobile client computes the new custom factor by:  

  ̃
   

     (  
   )                             (14) 

To obtain a stable value for   , we need to study the most recent   

driving routes of a user instead of a single trip. Meanwhile, the 

most recent driving paths should be more valuable in calculating 

   than those distant past. Therefore, we compute the new    by 

using a weighted moving average(WMA) shown as below 

  
      

    ̃
         

   

   
   

 
 

      
    ̃

        
        (15) 

where   is the window size of the moving average.  

In the next query, the   
      will be sent to the Cloud. Note that 

both path recording and   learning are performed in a user’s 

mobile phone. Therefore, the user’s privacy is preserved.  

5. Evaluation 
Considering that the travel time of a driving route depends on 

route, traffic and driver, we evaluated the following two aspects in 

the experiments. 1) Does our method precisely predict the future 

traffic conditions? 2) Does our method learn a user’s diver 

behavior accurately and estimate the travel time of a route for the 

user precisely? If the answers are yes, our service is valuable. 

5.1 Datasets 
Taxi Trajectories: We build our system using GPS trajectories 

generated by 33,000 taxis over a period of 3 months. The total 

distance of the dataset is over 400 million kilometers and the total 

number of GPS point reaches 790 million. The average sampling 

interval of the dataset is 3.1 minutes and the average (Euclidian) 

distance between two consecutive points is about 600 meters.  

Road Network: The adaptive routing is based on the road network 

of Beijing which has 106,579 road nodes and 141,380 segments. 

Singapore traffic data: This dataset includes the updates (in a 

frequency of every 26 minutes on average) of traffic conditions on 

50 road segments in Singapore from Nov. 1- Dec. 13 (43 days). 

5.2 Evaluation on Traffic Prediction  
Framework: 1) Prediction on a landmark edge: We use the taxi 

trajectories of the first two months as a training set (for offline 

mining) and choose 12 days, consisting of 6 workdays and 6 

weekends, from the trajectories of the third month as a test set. 6 

out of the 12 days had normal weather conditions, and the 

remainder had severe weather conditions. We use the expectation 

of the travel times as a predictor calculated based on the inferred 

distribution. The ground truth of a given landmark edge is 

computed in terms of the average travel time of the transitions 

(from the test dataset) pertaining to the landmark edge in the time 

slot to be inferred. 1,000 landmark edges with over 10 transitions 

are chosen for the evaluation. 2) Prediction on a road segment: 

We also test the performance of our method predicting traffic on 

road segments, using the Singapore traffic data. 

Baselines: We compare our     approach with two baseline 

methods: 1)   method (T-Drive [26]). This method selects the 

travel time distribution from the historical traffic patterns 

according the time slot to be inferred, and then transfer the 

distribution into a travel time expectation. 2)   method (ARIMA  

[10], whose order is determined using AIC criterion). This is a 

well-known baseline method predicting the traffic conditions on a 

landmark edge (or a road segment) in terms of the samples (e.g., 

taxi trajectories) received a certain time (e. g, 1 or 2 hours) earlier 

than the time to be inferred.  

Measurements: To quantify the accuracy of the traffic inference, 

we use the root mean square error (RMSE) defined as: 

     √
 

 
      ̂  

 
                             (16) 

where   is the real travel time,  ̂  is the predicted travel time and 

  is the number of predictions. Using this measurement, we study 

the performance of our approach changing over  . If not specified, 

the default   is 2, i.e., second-order Markov Model. 

Figure 11 a) shows the overall RMSE (the lower, the better) with 

  =90min,  =15min, between 2pm-7pm on weekdays. Clearly, 

    outperforms both the   and   methods, especially in the 

rush hours (6pm‐7pm), in which the traffic patterns (likely 

affected by multiple factors) change significantly and in complex 

ways; hence becomes difficult to predict for the baseline methods. 

Generally speaking, our method models a set of historical traffic 

patterns (for a landmark edge) conditioned by the recent traffic 

flows,       . Therefore, our method chooses different   

patterns to predict future traffic in terms of the  . However, the 

stand alone   method only has one pattern corresponding to a 

given time slot. 

 

a) w.r.t. time of day( =90min)                       b) w.r.t.   (  =30min) 

Figure 11: RMSE of different methods 
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Figure 11 b) plots the RMSE changing over   with  =30 minutes. 

As the delay   increases, the performance of these approaches 

decreases while our approach has smaller RMSE (about a 30-

second gap) than the competing methods. In short, given the same 

prediction error, our method is more capable of predicting traffic 

conditions at a farther time than   and   methods.  

Figure 12 a) visualizes the distribution of residual error of the 

three methods, where     has a clear advantage over   and  . 

Figure 13 investigates the performance varying in the order  , of 

our Markov model. Obviously, the 2nd-order model outperforms 

the 1st-order model because the traffic condition of a future time   

depends on not only the state right before   but also a sequence of 

traffic states in the near past of  . However, the larger   we select, 

more data and heavier computation are needed. In practice, it is 

not necessary to choose a very large   given that the traffic 

condition does not rely on the distant past. 

              

Figure 12: Distribution of residual error         Figure 13. RMSE vs   

Table 2 shows the RMSE of our method (with or without 

considering the weather) in predicting the future traffic conditions, 

using the time slot 6pm-7pm of the test days having a severe 

weather condition. Clearly, weather information brings significant 

benefit to our model. Given limited space we do not present more. 

Table 2: RMSE considering weather information 

  (min) with weather (s) without weather (s) 

30 90.6 106.6 

60 98.6 107.1 

90 97.7 140.4 

Figure 14 shows the overall precision of the predictions on road 

segments using the Singapore traffic data. Here, the traveling 

speed of a road is discretized into four classes representing 

different volumes of traffic flows according to a pre-defined 

schema, e.g., green denotes >40km/h and yellow represents 20-

40km/h. Though both ours and the   method outperform the   

method, our approach did not show clear advantages over the   

method according to the aggregated results (over 50 segments). 

But, our method does have a significantly better performance than 

the two baselines when predicting the traffic conditions on some 

road segments. So, we further explore these road segments, 

aiming to reveal the features (of roads) supporting our method. 

   

 

The Shrewsbury road, which is one of the good road segments 

(for ours), has a relatively complex linking structure in the road 

network, denoted as a blue segment in Figure 16 A). There are 

five kinds of directions and throughput that can happen at one of 

its terminal points (refer to the white arrows illustrated in Figure 

16 B). Hence, the traffic pattern on this road becomes more 

complex and difficult to model. This claim is further justified by 

the traffic conditions plotted in Figure 16 C) where the travel 

speed is chaotic and disorderly over time of day. Neither   nor   

can handle such a situation very well, and thus drops behind ours, 

as shown in Figure 15.  

 
Figure 16: Traffic pattern study on Shrewsbury road 

W.r.t. the road segments where our method is no better than the 

baselines, we found they have simple connecting structures in the 

road network. As demonstrated in Figure 17, Pan Island Expy is a 

straight road segment with only one link (to other road segments) 

at its terminal points (refer to Figure 17 A)). Thus, the traffic 

pattern on this road becomes similarly periodical and easy to 

predict (see Figure 17 B)) for the baselines. However, insufficient 

data (only 43 days) affects the precision of our model in inferring 

multiple       . 

 
Figure 17: Traffic pattern study on Pan Island Expy road 

As shown in Table 3, we further studied the average number of 

links connecting to a terminal point (node) in both the Beijing 

landmark graph and Singapore roads. Since a landmark (in 

Beijing data) usually has more links than a road segment (from 

Singapore), our method has a better overall performance on the 

Beijing dataset. Meanwhile, our method is more capable of 

predicting road segments with relatively more links to others. 

Given sufficient data, our method will show a higher performance. 

Table 3: Average number of links at a terminal point  

Datasets On all segments On good segments 

Beijing landmark 3.1 8.7 

Singapore 1.9 2.5 

5.3 Evaluation on Routing  
It is very difficult to directly evaluate whether a customized route 

(provided by our system) for a real user is the actually fastest one 

due to the following two reasons. First, a user can only drive on 

one route at a given time. You would never know if other routes 

are better (for the user) than the driven one. Requesting a different 

user to travel another route simultaneously would bring 

unexpected factors (caused by their different drive behaviors and 
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A) A complex road B) Street view of the complex road

C) The traffic patterns on the complex road

A) A simple road
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Figure 14: Overall precision of 

predictions on road segments Figure 15: RMSE of the road  



knowledge) to the evaluation. Second, it is not reasonable to 

request a single user to drive two different routes separately since 

the user can learn from their past driving experiences. So, the 

route driven later will benefit from the first test. 

To address the above challenges, instead of directly finding the 

fastest driving route for a particular user, we first record the routes 

the user has driven with GPS logs and then estimate the travel 

time of these routes based on our method and baselines 

respectively, using the GPS logs as ground truths. More 

specifically, by mapping a route   to a landmark graph, we 

convert   into a sequence of landmark edges           . Then, 

we measure the accuracy of the estimation using the absolute 

percentage error (APE), defined as Equation (17). 

    
       

 
   ̂     

      
 
 

                                (17) 

where       and  ̂     are the real and predicted travel times of   . 

Here, we use two users’ 1-year GPS logs (released in GeoLife 

dataset [28][29]) to determine the ground truth of the exact road 

segments a driver traversed and corresponding travel times. As 

proved in [26], T-Drive outperforms major routing services, such 

as speed-constraint-based and real-time-traffic-based methods, we 

only compare our approach with T-Drive here. Initially, we set 

 =1.0 on all the landmark edges for our method.  

Figure 18 illustrates the self-adaptive process for learning user 

A’s custom factor    on two different routes. First, the estimated 

travel time of our method gradually becomes accurate (measured 

by APE) and converges as the user A traverses these two routes 

more, showing advantage beyond that using a fixed  . For 

instance, when the user A traversed Route1 over 20 times, the 

APE of our method decreases to 0.15 while that of a fixed   = 1.0 

is still 0.3. Choosing a small   = 0.3, T-Drive has a relatively 

minor APE in the first several days, however, it drops behind our 

method after user A has traveled the route several times. This is 

because a user’s driving behavior changes over the times she has 

traveled a route. Second, the user A has different drive behaviors 

on these two routes. For example, our method can reach an APE 

of 0.15 after the user A traversed Route2 10 times while Route1 

needs to be traversed 20 times before APE approaches 0.15. 

     
(a) Route1                                        (b) Route2 

Figure 18: Self-learning user A’s custom factor 

   
                          (a) User A                                           (b)  User B 

Figure 19: Learning different two users’ factors on the same route 

Figure 19 plots the self-tuning processes of two users traversing 

the same route, demonstrating the fact that different users have 

different custom factors tuned in different ways. For instance, we 

see the clear difference between these two users’    after they 

traversed the route 11 times. Note that   is a vector rather than a 

single value and a route could include several landmark edges. 

According to these results, we should neither use the same custom 

factor for different users nor set a consistent factor for a particular 

user on different routes. Additionally, the custom factor of a user 

is dynamic and changes over the user’s driving experiences and 

skills on a road. So, our self-adaptive routing out-performs T-

Drive which is better than other major services. 

Efficiency: Besides being effective, our system is also efficient 

due to the following reasons. First, a landmark graph is only a 

subset of the original road network (8% in node size, 16% in edge 

size). So, the rough routing on the landmark graph is very fast. 

Also, a rough route indicating the key directions reduces the 

search area on a road network and enables parallel computing 

when performing the detailed routing [26]. Second, the high 

dimensional embedding approach speeds up the traffic prediction 

tremendously, as depicted in Figure 20. After calculating the 1-

step transition matrix which has the same computation with the 

statistic-based approach, our method computes the h-step (  2) 

very efficiently. The time cost shown in Figure 21 is an average 

time on calculating six transitions,   =1-6. Third, we only include 

the items (about 0.1% of     according to a study) with significant 

changes, sending a query to the Cloud. To reveal the performance 

of our method (regardless of system design), we test our system 

on a single server with 2.67GHz CPU and 16GB RAM (using a 

single thread without optimization) in the Cloud, as shown in 

Figure 21. The mobile client is running on a Windows smartphone 

with 1GHz CPU and GPRS connection. Roughly, we can answer 

1,000 queries per second using 30 (24-core) servers in a Cloud. 

 

 

6. RELATED WORK 

6.1 Traffic Estimation  
There are a few projects [1][2][9][11][12][25] aiming to learn 

historical traffic patterns, estimate real-time traffic flows and 

forecast future traffic conditions on some road segments in terms 

of floating car data [23], such as GPS trajectories as well as Wi-Fi 

and GSM signals. However, these methods are road-segment-

level inferences, which predict the traffic conditions on individual 

road segments with enough samples. Although our prediction 

model can also be used on a road segment, our work differs from 

the above methods in the following aspects. First, by using the 

landmark graphs, our work well models the city-wide traffic 

conditions from low sampling-rate trajectories (e.g., 3-5minutes 

per sample), and enables a real routing service. Second, the 

routing service considers the driver behavior both of an end user 

(for whom the route is being computed) and taxi drivers. Third, 

according to the experimental results our prediction model 

outperforms competing methods, such as ARIMA [10]. 

6.2 Smart Routing 
To optimize taxi drivers’ income, literatures [7][19] has proposed 

route recommendation services for a taxi driver by analyzing fleet 

trajectories. Here, they focus on taxi drivers’ pick-up behavior in 

creating higher profit (e.g., how to easily find passengers). So, a 
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normal end user cannot benefit from the recommended routes. 
Meanwhile, the traffic conditions are not involved in their systems. 

Papers like [17][18][21] present work that aims to provide 

personalized routes according to a user’s driving preferences in 

choosing a road, using user-computer interaction or implicit 

modeling. The recommended routes from these works are not 

optimized by travel time. Different from these works, the route we 

recommend to a driver is the practically fastest one customized for 

a particular driver, considering both traffic conditions of a future 

time (when the computed route will be actually traversed) and the 

behavior of the driver. Other factors, like day of the week, and 
weather conditions, are also considered in our routing model. 

Existing work [6][8][26] also aims to use user-generated GPS 

trajectories to improve routing services. The work presented in 

this paper significantly differs from those examples, especially 

our previous publication T-Drive [26] in the following five 

aspects. 1) T-Drive does not consider the drive behavior of end 

users for whom a route is computed. Also, a user’s mobile phone 

does not provide any knowledge of the user. But, our method self-

learns different users’ drive behaviors (varying in different roads 

and the times they traversed a road) according to the recent GPS 

logs, automatically and gradually, in their own mobile phones. 

The interaction between mobile and Cloud enables us to find the 

practically fastest driving route customized for a user. 2) T-Drive 

only employs the historical traffic patterns in the routing process. 

However, we infer the traffic conditions at a future time (when a 

road is actually driven) based on the historical patterns and real-

time traffic flow. The future traffic conditions are involved in the 

routing. 3) We incorporate other resources from the Web, like 

weather condition records, into the routing model. 4) We 

differentiate different taxi drivers’ knowledge in different regions. 

This helps us better model the traffic patterns and taxi drivers’ 

knowledge in choosing a route. 5) Given the above differences, 

we estimate the travel time of a route more precisely than T-Drive 

according to the extensive evaluations; our method hence can find 
better driving routes for a particular user. 

7. CONCLUSION 
This paper describes a system for computing shortest-time driving 

routes using traffic information and driver behavior. Specifically, 

the system mines historical traffic patterns (from GPS trajectories 

generated by taxicabs) and incorporates recent real-time traffic 

information (from the same fleet or road sensors) to predict future 

traffic conditions at the time when the computed route is actually 

driven. The system incorporates day of the week, time of day, 

weather conditions, and individual driving strategies (both of the 

fleet drivers and of the end user for whom the route is being 

computed). We build our system with a real-world dataset 

generated by over 33,000 taxis in Beijing, and evaluate our 

services with extensive experiments and in-the-field studies. The 

prediction model is also tested using a Singapore traffic dataset. 

The results show that: 1) our prediction method considering both 

historical patterns and real-time traffic,    , outperforms the 

approaches separately using  and   in predicting the future 

traffic conditions, especially, in handling road segments with 

relatively more links (to other segments). The proposed high 

dimensional embedding method speeds up the 2nd-order Markov 

model and enables the online traffic prediction. 2) Our system 

accurately estimates the travel time of a driving route for a 

particular user by self-tuning the custom factors (on different 

roads) for the user in terms of the user’s historical GPS logs. So, 
we can find practically fast routes customized for a particular user. 

In the future, we plan to learn a user’s driver behavior in a mobile 

phone, with a more efficient, accurate and advanced method. 

8. REFERENCE 
[1] Bejan, A., I., Gibbens, R., J., Evans D., Beresford, A., R., Bacon, J., 

Friday A. Statistical Modelling and Analysis of Sparse Bus Probe Data 

in Urban Areas, In Proc. ITS, 2010. 

[2] Castro-Neto, M., Jeong, Y. S., Jeong, M., K., Han, L., D. Online-SVR 

for short-term traffic prediction under typical and atypical traffic 

conditions. Expert systems with applications. 36, 2009 

[3] Chhikara, R., S., inverse L. F. L. The inverse Gaussian distribution: 

theory, methodology, and applications, 1989. 

[4] Coppersmith, D., Winograd S. Matrix multiplication via arithmetic 

progressions. Journal of symbolic computation; 1990:251--280. 

[5] Ding, B., Yu, J. X., Qin, L. Finding time-dependent shortest paths over 

large graphs. In Proc. EDBT; 2008:205-216. 

[6] Fawcett, J. and P. Robinson, Adaptive Routing for Road Traffic. IEEE 

Computer Graphics and Applications, 2000. 20(3): p. 46-53. 

[7] Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser M., Pazzani M. J. An 

Energy-Efficient Mobile Recommender System. In Proc. KDD 2010. 

[8] Gonzalez H., Han J., Li X., Myslinska M., Sondag J. P. Adaptive fastest 

path computation on a road network: A traffic mining approach. In Proc. 

VLDB, 2007. 

[9] Guehnemann A., Schaefer R. P., Thiessenhusen K. U., Wagner P. 

Monitoring traffic and emissions by floating car data. Institute of 

transport studies Australia, 2004. 

[10] Hamilton J. Time series analysis: Princeton University Press, 1994. 

[11] Herrera, J. C., Work, D. Ban, X., Herring, R. Jacobson, Q. and Bayen, A. 

Evaluation of traffic data obtained via GPS-enabled mobile phones: the 

Mobile Century field experiment. Transportation Research C, 18, pp. 

568–583, 2010. 

[12] Herring R., Hofleitner A., Abbeel P., Bayen A. Estimating arterial traffic 

conditions using sparse probe data. In Proc. ITS, 2010. 

[13] Hunter T., Herring R., Abbeel P., Bayen A. Path and travel time 

inference from GPS probe vehicle data. In Proc. Neural Information 

Processing Systems foundation (NIPS), 2009. 

[14] Kanoulas E., Du Y., Xia T., D. Z. Finding fastest paths on a road 

network with speed patterns. In Proc. ICDE, 2006. 

[15] Karlin S., Taylor H. M. A first course in stochastic processes, 1975. 

[16] Leibowitz, N., Baum, B., Enden, G., Karniel, A. The exponential 

learning equation as a function of successful trials results in sigmoid 

performance, Journal of Mathematical Psychology, 54(3):338-340, 2010. 

[17] Letchner J., Krumm J., and Horvitz E., Trip Router with Individualized 
Preferences (TRIP): Incorporating Personalization into Route Planning, 

In Proc. IAAI, 2006. 

[18] Liu B. Route Finding by using knowledge about the road network. IEEE 

Trans. on systems, man and cybernetics. 27 (4), 1997. 

[19] Liu, L., Andris, C., Biderman, A., Ratti, C. Uncovering cabdrivers’ 

behavior patterns from their digital traces. Computers, Environment and 

Urban Systems, 2010. 

[20] Lou, Y., Zhang, C., Zheng, Y., Xie, X., Huang, Y. Map-matching for 

low-sampling-rate GPS trajectories. In Proc. ACM SIGSPATIAL GIS, 

2009.  

[21] McGinty, L. and Smyth, B. Turas: A Personalized Route Planning 

System. In Proc. Sixth Pacific Rim International Conference on AI, 

PRICAI, 2000. 

[22] Orda, A., Rom R. Shortest-path and minimum-delay algorithms in 

networks with time-dependent edge-length. JACM; 1990:625. 

[23] Pfoser D. Floating Car Data. Encyclopedia of GIS 2008 

[24] Raftery A. E. A model for high-order Markov chains. Journal of the 

Royal Statistical Society. Series B (Methodological); 1985:528--39. 

[25] Thiagarajan A., et al. VTrack: accurate, energy-aware road traffic delay 

estimation using mobile phones. In Proc. of the 7th ACM Conference on 

Embedded Networked Sensor Systems, 2009.  

[26] Yuan J., Zheng Y., Zhang C. Y., Xie W., Xie, X., Sun, G., Huang, Y. T-
Drive: Driving Directions Based on Taxi Trajectories. In Proc. ACM 

SIGSPATIAL GIS, 2010. 

[27] Yuan J., Zheng Y., Zhang C. Y., Xie X. An Interactive-Voting based 

Map Matching Algorithm. In Proc. MDM, 2010. 

[28] Zheng, Y., Chen, Y., Xie, X., Ma, W., Y. GeoLife2.0: A Location-Based 

Social Networking Service. In Proc. MDM 2009.  
[29] Zheng, Y., Xie, X., Ma, W., Y. GeoLife: A Collaborative Social 

Network-ing Service among user, location and trajectory. IEEE 

Data Engineering Bulletin, 2010. 33(2), 2010, pp. 32-40 



 


